top of page


anemone cover 2023.png


Allard, C.A., Valencia-Montoya, W.A. and Bellono, N.W., 2023. Cephalopod chemotactile sensation. Current Biology, 33(20), pp.R1081-R1082.

Here we provide a quick guide to cephalopod chemotactile sensation.


Allard, C.A., Herbert, A.L., Kingsley, D.M. and Bellono, N.W., 2023. Sea robins. Current Biology, 33(13), pp.R704-R706.

Here we provide a quick guide to sea robins, an extremely unusual group of fishes with a host of dramatic adaptations suited for life on the sea floor.


He, L.S., Qi, Y., Allard, C.A., Valencia-Montoya, W.A., Krueger, S.P., Weir, K., Seminara, A. and Bellono, N.W., 2023. Molecular tuning of sea anemone stinging. Elife, 12, p.RP88900.

Here we use experiments and theory to find that stinging behavior is suited to distinct ecological niches.


Kang, G., Allard, C.A.H., Valencia-Montoya, W.A., van Giesen, L., Kim, J.J., Kilian, P.B., Bai, X., Bellono, N.W., Hibbs, R.E. 2023. Sensory specializations drive octopus and squid behavior. Nature, 616(7956), pp. 373-377.

Here, we show that both octopus and squid use cephalopod-specific chemotactile receptors (CRs) to sense their respective marine environments, but structural adaptations in these receptors support the sensation of specific molecules suited to distinct physiological roles. We find that squid express ancient CRs that more closely resemble related nicotinic acetylcholine receptors, while octopuses exhibit a more recent expansion in CRs consistent with their elaborated “taste by touch” sensory system.


Allard, C.A.H., Kang, G., Kim, J.J., Valencia-Montoya, W.A., Hibbs, R.E., and Bellono, N.W. 2023. Structural basis of sensory receptor evolution in octopus. Nature, 616(7956), pp. 378-383.

Here, we exploit octopus CRs to probe the structural basis of sensory receptor evolution. We present the cryo-electron microscopy (cryo-EM) structure of an octopus CR and compare it with nicotinic receptors to determine features that enable environmental sensation versus neurotransmission. Evolutionary, structural, and biophysical analyses show that channel architecture involved in cation permeation and signal transduction is conserved.


van Giesen, L., Kilian, P.B., Allard, C.A. and Bellono, N.W., 2020. Molecular basis of chemotactile sensation in octopus. Cell, 183(3), pp.594-604.

Here, we report that octopus arms use a family of cephalopod-specific chemotactile receptors (CRs) to detect poorly soluble natural products, thereby defining a form of contact-dependent, aquatic chemosensation.


Weir, K., Dupre, C., van Giesen, L., Lee, A.S. and Bellono, N.W., 2020. A molecular filter for the cnidarian stinging response. Elife, 9, p.e57578.

Here, we show that nematocytes from Nematostella vectensis use a specialized voltage-gated calcium channel (nCaV) to distinguish salient sensory cues and control the explosive stinging response.


Redhai, S., Pilgrim, C., Gaspar, P., Giesen, L.V., et al., 2020. An intestinal zinc sensor regulates food intake and developmental growth. Nature, 580(7802), pp.263-268.

Here we use a genetic screen in Drosophila melanogaster to identify Hodor, an ionotropic receptor in enterocytes that sustains larval development, particularly in nutrient-scarce conditions.


Bellono, N.W., Leitch, D.B. and Julius, D., 2018. Molecular tuning of electroreception in sharks and skates. Nature, 558(7708), pp.122-126.

Here we analyse shark and skate electrosensory cells to determine whether discrete physiological properties could contribute to behaviourally relevant sensory tuning.


Bellono, N.W., Bayrer, J.R., Leitch, D.B., Castro, J., Zhang, C., O’Donnell, T.A., Brierley, S.M., Ingraham, H.A. and Julius, D., 2017. Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell, 170(1), pp.185-198.

We show that EC cells express specific chemosensory receptors, are electrically excitable, and modulate serotonin-sensitive primary afferent nerve fibers via synaptic connections, enabling them to detect and transduce environmental, metabolic, and homeostatic information from the gut directly to the nervous system.


Bellono, N.W., Leitch, D.B. and Julius, D., 2017. Molecular basis of ancestral vertebrate electroreception. Nature, 543(7645), pp.391-396.

 Here we show that the voltage-gated calcium channel CaV1.3 and the big conductance calcium-activated potassium (BK) channel are preferentially expressed by electrosensory cells in little skate (Leucoraja erinacea) and functionally couple to mediate electrosensory cell membrane voltage oscillations, which are important for the detection of specific, weak electrical signals.


Bellono, N.W., Escobar, I.E., Lefkovith, A.J., Marks, M.S. and Oancea, E., 2014. An intracellular anion channel critical for pigmentation. Elife, 3, p.e04543.

Here we used direct patch-clamp of skin and eye melanosomes to identify a novel chloride-selective anion conductance mediated by OCA2 and required for melanin production.


Bellono, N.W., Kammel, L.G., Zimmerman, A.L. and Oancea, E., 2013. UV light phototransduction activates transient receptor potential A1 ion channels in human melanocytes. Proceedings of the National Academy of Sciences, 110(6), pp.2383-2388.

Here we report that in human epidermal melanocytes physiological doses of UVR activate a retinal-dependent current mediated by transient receptor potential A1 (TRPA1) ion channels.

bottom of page